8th Grade Physical Science Year-At-A-Glance (re:2018)

First 9 weeks Period

Mini Unit on the Metric System, Unit Analysis, and Scientific Notation

Common Core Math	NGSS
Common Core Math 8.EE.8-Analyze and solve pairs of simultaneous linear equations. 8.EE.3-Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the population of the United States as 3×10^8 and the population of the world as 7×10^9 , and determine that the world population is more than 20 times larger. 8.EE.4-Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology. 8.F.1-Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. (Function notation is not required in Grade 8.) 8 E 5-Describe qualitatively the functional relationship	NGSS Science and Engineering Practices- Develop and use models, analyze and interpret data, and use math and computational thinking. Cross Cutting Concepts- Patterns, scale, proportion, and quantity, and structure and function.
input and the corresponding output. (Function notation is not required in Grade 8.) 8.F.5-Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally. 8.SP.1-Construct and interpret scatter plots for bivariate	
measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.	

Waves and Their Applications

- Waves
- Information Transfer

NGSS	DCI	CCC and SEP
(MS-PS4-1) Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave. (MS-PS4-2) Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials. (MS-PS4-3) Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.	(PS4.A Wave Properties) A simple wave has a repeating pattern with a specific wavelength, frequency, and amplitude. (PS4.B Electromagnetic Radiation) When light shines on an object, it is reflected, absorbed, or transmitted through the object, depending on the object's material and frequency (color) of the light. The path that light travels can be traced as straight lines, except at surfaces between different transparent materials such as air and water, air and glass; where the light path bends. A wave model of light is useful for explaining brightness, color, and the frequency-dependent between media. However, because light can travel through space, it cannot be a matter wave, like sound or water waves. (PS4.C Information Technologies and Instrumentation) Digitized signals (sent as wave pulses) are a more reliable way to encode and transmit information.	 SEPs Developing and using models Using Mathematics and computational thinking Obtaining, evaluating, and communicating information Scientific knowledge is based on empirical evidence Analyzing and interpreting data CCCs Patterns Systems and system models Energy and matter Structure and function Scale, proportion, and quantity Stability and change Influence of science, engineering, and technology on society and the natural world Science is a human endeavor

Second 9 weeks Period

Chemistry Part One

- Structure of Matter
- States of Matter and Changes of State

NGSS	DCI	CCC and SEP
(MS-PS1-1) Develop models to describe the atomic composition of simple molecules and extended structures. (MS-PS1-4) Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.	(PS1.A) Structure and Properties of Matter. Substances are made from different types of atoms, which combine with one another in various ways. Atoms form molecules that range in size from two to thousands of atoms. Solids may be formed from molecules, or they may be extended structures with repeating subunits (e.g., crystals). Gases and liquids are made of molecules or inert atoms that are moving about relative to each other. In a liquid, the molecules are constantly in contact with others; in a gas, they are widely spaced except when they happen to collide. In a solid, atoms are closely spaced and may vibrate in position but do not change relative locations. The changes of state that occur with variations in temperature or pressure can be described and predicted using these models of matter.	 SEPs Developing and using models Obtaining, evaluating, and communicating information Analyzing and interpreting data Construct explanation CCCs Patterns Structure and function Scale, proportion, and quantity Cause and Effect

Third 9 weeks Period

Chemistry Part Two

- Chemical Processes and Equations
- Chemistry of Materials

NGSS	DCI	CCC and SEP
(MS-PS1-2) Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred. (MS-PS1-3) Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.	(PS1.A) Structure and Properties of Matter. Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it. (PS1.B) Chemical Reactions Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are	 SEPs Developing and using models Obtaining, evaluating, and communicating information Analyzing and interpreting data Constructing explanations and designing solutions.
(MS-PS1-5) bevelop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved. (MS-PS1-6) Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.	regrouped into different molecules, and these new substances have different properties from those of the reactants. Some chemical reactions release energy, others store energy. (PS3.A) Definitions of Energy The term "heat" as used in everyday language refers both to thermal energy (the motion of atoms or molecules within a substance) and the transfer of that thermal energy from one object to another. In science, heat is used only for this second meaning; it refers to the energy transferred due to the temperature difference between two objects. (secondary) The temperature of a system is proportional to the average internal kinetic energy and potential energy per atom or molecule (whichever is the appropriate building block for the system's material). The details of that relationship depend on the	 Patterns Structure and Function Cause and Effect Energy and Matter

type of atom or molecule and the	
interactions among the atoms in the	
material. Temperature is not a	
direct measure of a system's total	
thermal energy. The total thermal	
energy (sometimes called the total	
internal energy) of a system	
depends jointly on the temperature,	
the total number of atoms in the	
system, and the state of the	
material. (secondary)	
(ETS1.B) Developing Possible	
Solutions. A solution needs to be	
tested, and then modified on the	
basis of the test results, in order to	
improve it. (secondary)	
(ETS1.C) Optimizing the Design	
Solution. Although one design may	
not perform the best across all	
tests, identifying the characteristics	
of the design that performed the	
best in each test can provide useful	
information for the redesign process	
- that is, some of the characteristics	
may be incorporated into the new	
design. (secondary)	
The iterative process of testing the	
most promising solutions and	
modifying what is proposed on the	
basis of the test results leads to	
greater refinement and ultimately to	
an optimal solution. (secondary)	

Fourth 9 weeks Period

Energy and Energy Transfer

- Energy
- Energy Transfer
- Newton's Laws of Motion

NGSS	DCI	CCC and SEP
(MS-PS3-1) Construct and interpret	(PS3.A) Definitions of Energy	SEPs
graphical displays of data to	Motion energy is properly called	 Developing and using
describe the relationships of kinetic	kinetic energy; it is proportional to	models
energy to the mass of an object and	the mass of the moving object and	 Analyzing and interpreting
to the speed of an object.	grows with the square of its speed.	data
(MS-PS3-2) Develop a model to	(MS-PS3-1)	 Planning and Carrying Out
describe that when the	A system of objects may also	Investigations
arrangement of objects interacting	contain stored (potential) energy,	 Constructing Explanations
at a distance changes, different	depending on their relative	and Designing Solutions
amounts of potential energy are	positions. (MS-PS3-2)	 Scientific knowledge is
stored in the system.	Temperature is a measure of the	Based on Empirical
(MS-PS3-3) Apply scientific	average kinetic energy of particles	Evidence
principles to design, construct, and	of matter. The relationship between	
test a device that either minimizes	the temperature and the total	CCCs
or maximizes thermal energy	energy of a system depends on the	 Scale, Proportion, and
transfer.	types, states, and amounts of	Quantity
(MS-PS3-4) Plan an investigation to	matter present. (MS-PS3-3), (MS-	 Systems and System
determine the relationships among	PS3-4).	Models
the energy transferred, the type of	(PS3.B) Conservation of Energy and	 Energy and Matter
matter, the mass, and the change in	Energy Transfer.	
the average kinetic energy of the	When the motion energy of an	
particles as measured by the	object changes, there is inevitably	
temperature of the sample.	some other change in energy at the	
(MS-PS3-5) Construct, use, and	same time.	
present arguments to support the	(PS3.C) Relationship Between	
claim that when the kinetic energy	Energy and Forces. When two	
of an object changes, energy is	objects interact, each one exerts a	
(MC FTC1 2) Evaluate competing	force on the other that can cause	
(MS-ETSI-2) Evaluate competing	the object (MS DS2 2)	
nesses to determine how well they	(FTS1 A) Defining and Delimiting	
process to determine now well they	(ETST.A) Defining and Definiting	
the problem	The more precisely a decign tack's	
(MS_ETS1_4) Dovelop a model to	criteria and constraints can be	
(MS-ETSI-4) Develop a model to	defined the more likely it is that the	
and modification of a proposed	designed solution will be successful	
and mounication of a proposed	Consideration of constraints includes	
object, tool, of process such that all	specification of coinstituints includes	
opulliar design can be achieved.	and other relevant knowledge that	
	and other relevant knowledge that	
	(ETC1 B) Developing Descible	
	(EISI.D) Developing Possible	
	There are systematic processes for	
	avaluating solutions with respect to	
	bow well they most the criteria and	
	constraints of a problem	
	constraints of a problem.	